3.5.65 \(\int \frac {d+c^2 d x^2}{(a+b \sinh ^{-1}(c x))^{3/2}} \, dx\) [465]

Optimal. Leaf size=228 \[ -\frac {2 d \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}-\frac {3 d e^{a/b} \sqrt {\pi } \text {Erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c}-\frac {d e^{\frac {3 a}{b}} \sqrt {3 \pi } \text {Erf}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c}+\frac {3 d e^{-\frac {a}{b}} \sqrt {\pi } \text {Erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c}+\frac {d e^{-\frac {3 a}{b}} \sqrt {3 \pi } \text {Erfi}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c} \]

[Out]

-3/4*d*exp(a/b)*erf((a+b*arcsinh(c*x))^(1/2)/b^(1/2))*Pi^(1/2)/b^(3/2)/c+3/4*d*erfi((a+b*arcsinh(c*x))^(1/2)/b
^(1/2))*Pi^(1/2)/b^(3/2)/c/exp(a/b)-1/4*d*exp(3*a/b)*erf(3^(1/2)*(a+b*arcsinh(c*x))^(1/2)/b^(1/2))*3^(1/2)*Pi^
(1/2)/b^(3/2)/c+1/4*d*erfi(3^(1/2)*(a+b*arcsinh(c*x))^(1/2)/b^(1/2))*3^(1/2)*Pi^(1/2)/b^(3/2)/c/exp(3*a/b)-2*d
*(c^2*x^2+1)^(3/2)/b/c/(a+b*arcsinh(c*x))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.30, antiderivative size = 228, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {5790, 5819, 5556, 3389, 2211, 2236, 2235} \begin {gather*} -\frac {3 \sqrt {\pi } d e^{a/b} \text {Erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c}-\frac {\sqrt {3 \pi } d e^{\frac {3 a}{b}} \text {Erf}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c}+\frac {3 \sqrt {\pi } d e^{-\frac {a}{b}} \text {Erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c}+\frac {\sqrt {3 \pi } d e^{-\frac {3 a}{b}} \text {Erfi}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c}-\frac {2 d \left (c^2 x^2+1\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + c^2*d*x^2)/(a + b*ArcSinh[c*x])^(3/2),x]

[Out]

(-2*d*(1 + c^2*x^2)^(3/2))/(b*c*Sqrt[a + b*ArcSinh[c*x]]) - (3*d*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c*x]]
/Sqrt[b]])/(4*b^(3/2)*c) - (d*E^((3*a)/b)*Sqrt[3*Pi]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c*x]])/Sqrt[b]])/(4*b^(3/
2)*c) + (3*d*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c*x]]/Sqrt[b]])/(4*b^(3/2)*c*E^(a/b)) + (d*Sqrt[3*Pi]*Erfi[(Sqrt
[3]*Sqrt[a + b*ArcSinh[c*x]])/Sqrt[b]])/(4*b^(3/2)*c*E^((3*a)/b))

Rule 2211

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - c*(
f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2235

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2
]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2236

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F],
 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3389

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 5556

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5790

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[Simp[Sqrt[1 + c^2*
x^2]*(d + e*x^2)^p]*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Dist[c*((2*p + 1)/(b*(n + 1)))*Simp[(d
+ e*x^2)^p/(1 + c^2*x^2)^p], Int[x*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n + 1), x], x] /; FreeQ[{a, b
, c, d, e, p}, x] && EqQ[e, c^2*d] && LtQ[n, -1]

Rule 5819

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*
c^(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1),
x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rubi steps

\begin {align*} \int \frac {d+c^2 d x^2}{\left (a+b \sinh ^{-1}(c x)\right )^{3/2}} \, dx &=-\frac {2 d \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}+\frac {(6 c d) \int \frac {x \sqrt {1+c^2 x^2}}{\sqrt {a+b \sinh ^{-1}(c x)}} \, dx}{b}\\ &=-\frac {2 d \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}+\frac {(6 d) \text {Subst}\left (\int \frac {\cosh ^2(x) \sinh (x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{b c}\\ &=-\frac {2 d \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}+\frac {(6 d) \text {Subst}\left (\int \left (\frac {\sinh (x)}{4 \sqrt {a+b x}}+\frac {\sinh (3 x)}{4 \sqrt {a+b x}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{b c}\\ &=-\frac {2 d \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}+\frac {(3 d) \text {Subst}\left (\int \frac {\sinh (x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{2 b c}+\frac {(3 d) \text {Subst}\left (\int \frac {\sinh (3 x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{2 b c}\\ &=-\frac {2 d \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}-\frac {(3 d) \text {Subst}\left (\int \frac {e^{-3 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c}-\frac {(3 d) \text {Subst}\left (\int \frac {e^{-x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c}+\frac {(3 d) \text {Subst}\left (\int \frac {e^x}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c}+\frac {(3 d) \text {Subst}\left (\int \frac {e^{3 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c}\\ &=-\frac {2 d \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}-\frac {(3 d) \text {Subst}\left (\int e^{\frac {3 a}{b}-\frac {3 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{2 b^2 c}-\frac {(3 d) \text {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{2 b^2 c}+\frac {(3 d) \text {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{2 b^2 c}+\frac {(3 d) \text {Subst}\left (\int e^{-\frac {3 a}{b}+\frac {3 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{2 b^2 c}\\ &=-\frac {2 d \left (1+c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \sinh ^{-1}(c x)}}-\frac {3 d e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c}-\frac {d e^{\frac {3 a}{b}} \sqrt {3 \pi } \text {erf}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c}+\frac {3 d e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c}+\frac {d e^{-\frac {3 a}{b}} \sqrt {3 \pi } \text {erfi}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.53, size = 295, normalized size = 1.29 \begin {gather*} \frac {d e^{-3 \left (\frac {a}{b}+\sinh ^{-1}(c x)\right )} \left (-e^{\frac {3 a}{b}}-3 e^{\frac {3 a}{b}+2 \sinh ^{-1}(c x)}-3 e^{\frac {3 a}{b}+4 \sinh ^{-1}(c x)}-e^{\frac {3 a}{b}+6 \sinh ^{-1}(c x)}+3 e^{\frac {4 a}{b}+3 \sinh ^{-1}(c x)} \sqrt {\frac {a}{b}+\sinh ^{-1}(c x)} \Gamma \left (\frac {1}{2},\frac {a}{b}+\sinh ^{-1}(c x)\right )+\sqrt {3} e^{3 \sinh ^{-1}(c x)} \sqrt {-\frac {a+b \sinh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )+3 e^{\frac {2 a}{b}+3 \sinh ^{-1}(c x)} \sqrt {-\frac {a+b \sinh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {a+b \sinh ^{-1}(c x)}{b}\right )+\sqrt {3} e^{\frac {6 a}{b}+3 \sinh ^{-1}(c x)} \sqrt {\frac {a}{b}+\sinh ^{-1}(c x)} \Gamma \left (\frac {1}{2},\frac {3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )\right )}{4 b c \sqrt {a+b \sinh ^{-1}(c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + c^2*d*x^2)/(a + b*ArcSinh[c*x])^(3/2),x]

[Out]

(d*(-E^((3*a)/b) - 3*E^((3*a)/b + 2*ArcSinh[c*x]) - 3*E^((3*a)/b + 4*ArcSinh[c*x]) - E^((3*a)/b + 6*ArcSinh[c*
x]) + 3*E^((4*a)/b + 3*ArcSinh[c*x])*Sqrt[a/b + ArcSinh[c*x]]*Gamma[1/2, a/b + ArcSinh[c*x]] + Sqrt[3]*E^(3*Ar
cSinh[c*x])*Sqrt[-((a + b*ArcSinh[c*x])/b)]*Gamma[1/2, (-3*(a + b*ArcSinh[c*x]))/b] + 3*E^((2*a)/b + 3*ArcSinh
[c*x])*Sqrt[-((a + b*ArcSinh[c*x])/b)]*Gamma[1/2, -((a + b*ArcSinh[c*x])/b)] + Sqrt[3]*E^((6*a)/b + 3*ArcSinh[
c*x])*Sqrt[a/b + ArcSinh[c*x]]*Gamma[1/2, (3*(a + b*ArcSinh[c*x]))/b]))/(4*b*c*E^(3*(a/b + ArcSinh[c*x]))*Sqrt
[a + b*ArcSinh[c*x]])

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {c^{2} d \,x^{2}+d}{\left (a +b \arcsinh \left (c x \right )\right )^{\frac {3}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c^2*d*x^2+d)/(a+b*arcsinh(c*x))^(3/2),x)

[Out]

int((c^2*d*x^2+d)/(a+b*arcsinh(c*x))^(3/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)/(a+b*arcsinh(c*x))^(3/2),x, algorithm="maxima")

[Out]

integrate((c^2*d*x^2 + d)/(b*arcsinh(c*x) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)/(a+b*arcsinh(c*x))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} d \left (\int \frac {c^{2} x^{2}}{a \sqrt {a + b \operatorname {asinh}{\left (c x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c x \right )}} \operatorname {asinh}{\left (c x \right )}}\, dx + \int \frac {1}{a \sqrt {a + b \operatorname {asinh}{\left (c x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c x \right )}} \operatorname {asinh}{\left (c x \right )}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c**2*d*x**2+d)/(a+b*asinh(c*x))**(3/2),x)

[Out]

d*(Integral(c**2*x**2/(a*sqrt(a + b*asinh(c*x)) + b*sqrt(a + b*asinh(c*x))*asinh(c*x)), x) + Integral(1/(a*sqr
t(a + b*asinh(c*x)) + b*sqrt(a + b*asinh(c*x))*asinh(c*x)), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)/(a+b*arcsinh(c*x))^(3/2),x, algorithm="giac")

[Out]

integrate((c^2*d*x^2 + d)/(b*arcsinh(c*x) + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {d\,c^2\,x^2+d}{{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + c^2*d*x^2)/(a + b*asinh(c*x))^(3/2),x)

[Out]

int((d + c^2*d*x^2)/(a + b*asinh(c*x))^(3/2), x)

________________________________________________________________________________________